Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain.
نویسندگان
چکیده
The covalent modification of intracellular proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as a crucial regulatory posttranslational modification akin to phosphorylation. Numerous studies point to the significance of O-GlcNAc in cellular processes such as nutrient sensing, protein degradation, and gene expression. Despite its importance, the breadth and functional roles of O-GlcNAc are only beginning to be elucidated. Advances in our understanding will require the development of new strategies for the detection and study of O-GlcNAc-modified proteins in vivo. Herein we report the direct, high-throughput analysis of O-GlcNAc-glycosylated proteins from the mammalian brain. The proteins were identified by using a chemoenzymatic approach that exploits an engineered galactosyltransferase enzyme to selectively label O-GlcNAc proteins with a ketone-biotin tag. The tag permits enrichment of low-abundance O-GlcNAc species from complex mixtures and localization of the modification to short amino acid sequences. Using this approach, we discovered 25 O-GlcNAc-glycosylated proteins from the brain, including regulatory proteins associated with gene expression, neuronal signaling, and synaptic plasticity. The functional diversity represented by this set of proteins suggests an expanded role for O-GlcNAc in regulating neuronal function. Moreover, the chemoenzymatic strategy described here should prove valuable for identifying O-GlcNAc-modified proteins in various tissues and facilitate studies of the physiological significance of O-GlcNAc across the proteome.
منابع مشابه
Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry.
The post-translational modification of proteins with N-acetylglucosamine (O-GlcNAc) is involved in the regulation of a wide variety of cellular processes and associated with a number of chronic diseases. Despite its emerging biological significance, the systematic identification of O-GlcNAc proteins is still challenging. In the present study, we demonstrate a significantly improved O-GlcNAc pro...
متن کاملTandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets.
O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease ...
متن کاملDirect in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins.
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide-alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel det...
متن کاملO-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry.
O-GlcNAc is a widespread dynamic carbohydrate modification of cytosolic and nuclear proteins with features analogous to phosphorylation. O-GlcNAc acts critically in many cellular processes, including signal transduction, protein degradation, and regulation of gene expression. However, the study of its specific regulatory functions has been limited by difficulties in mapping sites of O-GlcNAc mo...
متن کاملO-Linked N-Acetylglucosamine Proteomics of Postsynaptic Density Preparations Using Lectin Weak Affinity Chromatography and Mass Spectrometry*□S
O-GlcNAc is a widespread dynamic carbohydrate modification of cytosolic and nuclear proteins with features analogous to phosphorylation. O-GlcNAc acts critically in many cellular processes, including signal transduction, protein degradation, and regulation of gene expression. However, the study of its specific regulatory functions has been limited by difficulties in mapping sites of O-GlcNAc mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 36 شماره
صفحات -
تاریخ انتشار 2004